

NRO: Overview of Enterprise Requirements

LTJG Robert Grzybowski, USN

IMINT/RTS - Enabling Technologies

Contractors:

Marti Bancroft, Shomo Technical Systems

- Multiple data centers and labs
- Separated by campus, metro, or continental distances
- All developing/prototyping/deploying core enterprise applications
- Also expected to soon handle enterprisewide data sharing and resource sharing

Our Emphasis

• Time critical / Time to solution!

- Datasets are huge
 - Priority is variable

• Time-Critical Problems are global

Our Enterprise Community

Data Management Support to Applications

Organizational Goals

- Combine geographically diverse data centers into a single virtual data center
- Maximize utilization
 - Currently, systems are dedicated to specific applications and that lowers utilization of total enterprise resources
 - Integrate old systems alongside of newer, resource sharing
- Run applications that may access data anywhere in this virtual data center
- Provide failover capability across data centers
- Self-federate to add, subtract assets dynamically
 - Data storage, data source, data sync
- Scale in all dimensions to meet evolving enterprise needs

I/O Requirements Continue to Increase

- 3.5 4.0 PetaBytes per day ingest (envisioned)
- Some data sets very large (many GB to even TB)
 - Some processing cannot be broken into sub-processes
 - Data occasionally must be reassembled during processing
- Single streams up to 30 Gigabytes/second
- Internal ground station bandwidth 5-10x or more the ingest rates to ensure parallel processing chains and asynchronous access
- Restart tasks rather than checkpoint/restart

NRO's 5-10 Year View

- HPC performance requires HPC I/O performance
 - Mega to Gigabytes/second sustained for large datasets
 - Efficiency let the CPUs and memories be used for compute, not shoving bytes around
 - DMA
 - Very large requests

Key shared file systems features for HPC I/O

We're not sure COTS development is going to fully realize our needs in these areas.

- Striping to increase single-file rates
- Means to increase aggregate file system rates without dropping MTBF numbers
- Expandability without dump/restore
- Recoverability/resiliency
- Small files/metadata scaling to HPC space

Current Research Efforts

Combination research with prime contractors and in-house

- Geared specifically towards our missions
- Hardware technology development
- Mission related algorithms
- Some research may trickle down to commercial

Current HPC I/O research in modeling current and future I/O systems, no development into new file systems and I/O gap areas; NRO previously anticipated I/O evolution to occur in sync with COTS HPC development.

Proposed Future Research Focal Points

- Data transparency
 - Our current systems are heterogeneous, need to consider future architecture goal
 - Goal is 30 GBytes/sec, today we have trouble reaching 500 MBytes/sec
 - XML, XDR, HDF5... efficiency?
 - Long term archives?
 - Have metadata include information about following binary data
- QoS and Determinism
 - Large files are IMPORTANT to us
 - Mitigation of adverse effects of transport on different data types

Proposed Future Research Focal Points

- How can you easily/automatically add resources to the distributed environment?
 - Storage (adding storage or configuring compute resources to use storage) is a challenge
 - Easier with NAS but at a huge performance and efficiency penalty
 - Investigating newer storage technologies
 - Storage & compute resources need to self-federate
- Data awareness in scheduling WAN will be enterprise internal bandwidth bottleneck for "follow the sun" processing

NRO: Overview of Enterprise Requirements

Questions?